Synthesis of Fe16N2 compound Free-Standing Foils with 20 MGOe Magnetic Energy Product by Nitrogen Ion-Implantation

نویسندگان

  • Yanfeng Jiang
  • Md Al Mehedi
  • Engang Fu
  • Yongqiang Wang
  • Lawrence F. Allard
  • Jian-Ping Wang
چکیده

Rare-earth-free magnets are highly demanded by clean and renewable energy industries because of the supply constraints and environmental issues. A promising permanent magnet should possess high remanent magnetic flux density (Br), large coercivity (Hc) and hence large maximum magnetic energy product ((BH)max). Fe16N2 has been emerging as one of promising candidates because of the redundancy of Fe and N on the earth, its large magnetocrystalline anisotropy (Ku > 1.0 × 10(7) erg/cc), and large saturation magnetization (4πMs > 2.4 T). However, there is no report on the formation of Fe16N2 magnet with high Br and large Hc in bulk format before. In this paper, we successfully synthesize free-standing Fe16N2 foils with a coercivity of up to 1910 Oe and a magnetic energy product of up to 20 MGOe at room temperature. Nitrogen ion implantation is used as an alternative nitriding approach with the benefit of tunable implantation energy and fluence. An integrated synthesis technique is developed, including a direct foil-substrate bonding step, an ion implantation step and a two-step post-annealing process. With the tunable capability of the ion implantation fluence and energy, a microstructure with grain size 25-30 nm is constructed on the FeN foil sample with the implantation fluence of 5 × 10(17)/cm(2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of nitrogen ion implantation on the nanostructure and corrosivity of Ni/stainless steel substrates

Ion implantation is a surface modification technology to produce new material on the surface by impingement of high energy ions from the ion accelerator. In this work, AISI 304 stainless steels were coated with 90 nm Ni film by electron beam deposition and implanted by a flow of 5×1017 N cm−2 at 400 K temperature with different implantation energies of 10, 20, 30 and 40 keV. The prepared sample...

متن کامل

High-energy product exchange-spring FePt/Fe cluster nanocomposite permanent magnets

In this paper, we report on the production of Fe cluster/FePt matrix nanocomposite permanent magnets. Monodispersed Fe clusters with sizes below 10 nm were formed by gas aggregation techniques. These Fe clusters were imbedded in an FePt matrix by alternate deposition from two sources. Specimens with a range of Fe cluster phase content from 0 to 30 vol% were produced by controlling deposition ti...

متن کامل

Synthesis and characterization of some transition metal complexes of Schiff base derived from 2,4 - dihydroxybenzaldehyde

Abstract New N2O2 type Schiff base has been designed and synthesized by condensing 2,4 dihydroxy benzaldehyde and α-naphthylamine in ethanol. Solid metal complexes of the schiff base with Cu(II), Ni(II) and Zn(II) metal ion were synthesized and characterized by elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis and ‘H NMR spectral studies. The data shows that the c...

متن کامل

Influence of Ni Deposition and Subsequent N+ Ion Implantation at Different Implantation Energies on Nano-Structure and Corrosion Behavior of 316 Stainless Steels

Nickel films of 300 nm thickness were deposited by electron beam evaporation at room temperature on 316 stainless steels. Corrosion studies of Ni coated 316 SS have been performed after N+ ion implantation at different energies of 20, 40, 60 and 80 keV. The structure and surface morphology of the films were evaluated using X-ray diffraction (XRD), atomic force microscope (AFM) an...

متن کامل

Fabrication and Study of the Structure and Magnetism of Rare-earth Free Nanoclusters

Extensive search for new magnetic materials free of critical rare-earth elements or expensive platinum suitable for technology or energy-applications is one of the main factors driving today's research in magnetism. Development of these new materials is often hindered by conventional bulk-synthesis techniques which result in phase mixtures or poor magnetic properties. This dissertation focusses...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016